
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19668  | https://doi.org/10.1038/s41598-020-76311-y

www.nature.com/scientificreports

Molecular nature 
of breakdown of the folic acid 
under hydrothermal treatment: 
a combined experimental and DFT 
study
Anna M. Abramova1, Alina A. Kokorina1, Olga A. Sindeeva1, Franck Jolibois2, Pascal Puech3, 
Gleb B. Sukhorukov1,4, Irina Y. Goryacheva1 & Andrei V. Sapelkin1,4*

Using a combination of experimental Raman, FTIR, UV–VIS absorption and emission data, together 
with the corresponding DFT calculations we propose the mechanism of modification of the folic acid 
specifically under the hydrothermal treatment at 200 °C. We established that folic acid breaks down 
into fragments while the pteridine moiety remains intact likely evolving into 6-formylpterin with 
the latter responsible for the increase in fluorescence emission at 450 nm. The results suggest that 
hydrothermal approach can be used for production of other purpose-engineered fluorophores.

Folic acid (FA) is one of the most well-known and essential compounds involved in a variety of biochemical pro-
cesses. As a consequence, its structure, stability and interaction with a wide range of live systems and molecular 
compounds under variety of conditions have been widely  studied1. There is also particular interest in FA related 
to cancer cell targeting as they exhibit (compared to normal healthy cells) overexpressed folate receptors on their 
 surface2. It has recently been reported that hydrothermal treatment (HT) of FA can result in the production of 
carbon nanoparticles generally referred to as graphene quantum  dots3 or carbon  dots4,5 with the average particle 
size from 2 to 5 nm. These new systems show increased light emission intensity while apparently retaining the 
cancer targeting  functionality3,4,6. The exact mechanism of the increase in the light emission is still unclear with 
some papers suggesting decomposition of pterin moiety following hydrothermal treatment for 6 h at 220 °C3, 
while others suggest presence of folic acid residues following HT treatment for 6 h at 240 °C5. At the same time, 
a recent  study7 into the mechanism of binding between the FA and folate receptors demonstrates that it is driven 
by a complementary charge and shape of the FA pterin moiety, thus suggesting that the shape of the pterin moiety 
plays the key role in the folate receptor binding. Hence, HT synthesis conditions for processing of FA should be 
best designed to preserve the pterin moiety if cancer-targeting functionality is desired.

The temperature stability of the FA in the solid state has been investigated  previously8 and it was found that 
FA undergoes significant degradation by 200 °C. On temperature increase the total loss of glutamic acid occurs 
above 148 °C with loss of amide functionality by 195 °C. Further degradation occurs above 262 °C that results 
in breakdown of the pterin moiety. Investigation of the thermal stability of the folic acid in liquid media are less 
detailed, but indicate that FA is stable at temperatures below 180 °C9. These findings suggest that HT synthesis 
temperatures should typically be in arrange of up to 250 °C to avoid complete degradation of the FA.

Thus far, most of the publications on the subject of HT treatment of FA for the purpose of enhanced fluores-
cence report changes observed in the UV–VIS absorption signal and in the light emission in the blue range of 
the optical  spectrum3–6,10. Significantly, the emission is typically found to be excitation-independent in contrast 
to the carbon dots prepared from other  precursors11,12, while quantum yield reaches values of over 90%3,5. How-
ever, the atomic structure and the nature of the light emission in these systems remains unclear. Thus, one of the 
key questions about the exact structural evolution pathway of FA under the HT treatment remains unanswered, 
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while addressing it would certainly help optimisation of HT synthesis methods for preparation of FA-based 
cancer-targeting fluorophores.

It has been recently demonstrated that DFT calculations can provide molecular-level information on FA 
breakdown under UV  illumination13,14, suggesting this can be an affective route to establishing molecular mecha-
nism and the nature of reaction products. We also  found15 that a combination of optical characterisation together 
with gel-electrophoresis separation can provide crucial insights into the nature of the light emission in carbon 
nanodots. In this work we tackle the question of structural evolution of FA under HT treatment using similar 
methodology aided by DFT calculations.

Results and discussion
A typical TEM image of the FA following HT treatment is shown in Fig. 1a, where one can observe several darker 
areas around 3–4 nm  in size. This is a typical size of the HT treated FA reported  previously3,5 and may indicate 
formation of carbon nanoparticles. However, comparative gel-electrophoresis runs (see Fig. 1b and Fig. S1) clearly 
suggest that the size of fluorescent particles have not changed following HT treatment since their distance from 
the loading wells (red dashed line) is nearly identical. This suggests that the fluorophore obtained following HT 
treatment is likely to be molecular in nature. At the same time, the emission intensity from the HT-treated FA 
has clearly increased. This is supported by the quantum yield (QY) measurements in the corresponding samples 
(see Table S1). We also found that increasing the HT treatment time from 120 to 180 min at 200 °C results in 
decrease in quantum yield, hence only samples with the highest QY (9.5%) prepared over 120 min at 200 °C 
have been studied.

The FA molecule is composed of three moieties (see Fig. 1c): 6-methylpterin (MPT, pteridine ring), p-amin-
obenzoic acid (PABA) and glutamic acid (Glu). The MPT is responsible for the binding of FA by folate  receptors7 
as well as for the intrinsic light emission from the FA molecule. PABA is playing the key role in non-radioactive 
relaxation via the intramolecular charge transfer from the photoexcited  MPT16,17, thus quenching the fluorescence 
emission. Hence, observed increase in fluorescence QY indicates disruption to the non-radiative intramolecular 
excitation transfer.

Evolution of the optical absorption and of the normalised emission spectra of FA under HT treatment is 
shown in Fig. 2a. We found that noticeable changes (indicated by the blue shaded area) appear in the absorption 
signal around 120 min at 200 °C and become significant after 180 min at 200 °C. At the same time, we observed 
gradual increase in the emission intensity and QY (see Table S1) without noticeable changes in the emission 
peak shape (see Fig. 2a).

Thus, emission data suggest that the main effect of HT treatment is to disrupt the non-radiative relaxation 
pathway, which suggest significant PABA degradation. This is further confirmed by the DFT simulations that 
were used to obtain absorption signals (see Fig. 2b) for FA, FA fragment without the Glu (FA-no Glu) and finally, 
for two modified MPT fragments: pterine-6-carboxilic acid (Pterine) and 6-formyl pterin (6-FP). The latter 
two were identified as the most likely final configurations of the MPT fragment in an aqueous solution under 
the hypothesis of breakdown of Glu and PABA. Here we note peaks developing around 240 and 310 nm in the 
absorption data of Fig. 2a for 120 min sample (these are even more pronounced for 180 min sample). These peaks 
are also indicated by the blue shaded area in the data obtained from the DFT calculations. It is clear that these 
peaks correspond to the structure with no PABA (and following the dissociation of glutomate)—6-FP—indeed 
suggesting that the effect of HT treatment of FA for 120 min at 200 °C is the disruption of the non-radiative 
recombination through PABA due to FA degradation possibly to 6-FP.

Further insights into the evolution of the folic acid under HT treatment can be gained from the IR and 
Raman measurements. Infra-red (IR) spectroscopy is particularly sensitive to the hetero-nuclear polar functional 
group vibrations as it depends on a change in the corresponding dipole moment, while Raman is sensitive to the 

Figure 1.  TEM image of HT FA (a); gel-electrophoresis photo of FA and HT-treated FA (b). Red dotted line 
indicates location of the loading wells. Main structural units of the FA (c).
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non-polar bonds. Hence, the combination of the two techniques can yield the overall picture of the structural 
evolution of the surface groups and of the molecular backbone in HT-treated FA. The most obvious changes 
in the IR data (see Fig. 3) are around 2820–3000 cm−1 where a development of strong sharp peaks can be seen 
(see arrows) corresponding to the C–H stretching vibrations. These are typical of  alkenes18 possibly indicating 
presence of large number of products resulting from the breakdown of the Glu part of FA. Crucially, features cor-
responding to the presence of aromatic  systems18 remain strong at around 1400 cm−1, 1500 cm−1 and 1600 cm−1, 
suggesting that these are largely intact. In addition, a number of broad peaks in the 2750–3500 cm−1 range are 
also retained. In the folic acid this range corresponds to the NH and  NH2 stretching  vibrations19 found in the 
secondary and primary amines, hence these seem to be largely preserved.

Experimental Raman data together with the spectra obtained from the DFT simulations are shown in Fig. 4. 
The blue shaded regions indicate areas where the Raman signal is largely preserved despite reduced signal inten-
sity and changes in the signal shape, while in the red areas the signal is degraded. The DFT-based calculations 
of the Raman signal (see Fig. 4b) allow detailed assessment of the effect of FA decomposition on the Raman 
spectra. Comparative analysis of the Raman spectra indicate that it is peaks corresponding to the Glu and the 
PABA moieties that disappear as a result of HT treatment of the FA, while signals corresponding to the MPT 
(both in 6-FP and pterine forms) are preserved.

Thus, we conclude, that the MPT fragment of the FA remains largely intact following HT treatment of the FA 
and is responsible for the widely reported increase in the fluorescence quantum yield. Absorption and Raman 
data provide further insights into the chemical state of the MPT fragment which is likely to be stabilised by the 
OH groups present in the aqueous synthesis environment. The UV–VIS absorption (Fig. 1) and the Raman 

Figure 2.  Effects of the hydrothermal treatment time on the absorption and emission spectra of hydrothermally 
treated folic acid solution (C = 10–3 M) (a). Emission spectra have been normalised for clarity. DFT calculations 
of absorption of FA: FA, FA fragment without the Glu (FA-no Glu), pterine-6-carboxilic acid (Pterine) and 
6-formyl pterin (6-FP) (b).

Figure 3.  IR spectra of the FA before and after HT treatment (120 min at 200 °C).
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(Fig. 4) data suggest presence of 6-formylpterin20–22, while formation of the pterin-6-carboxilic acid also cannot 
be entirely  excluded20. It has been  reported4,6,23,24 that HT-treated FA retains its folate receptor targeting properties 
which, together with the results of this study, strongly suggest that the MPT shape and the key surface groups 
responsible for the folate receptor binding remain intact (at least up to 120 min at 200 °C) since FA binding 
to the receptor involves both shape and charge  complementarity7. At this point we should point out that an 
increase in fluorescence emission has been well documented in case of exposure of FA to the UV light and the 
exact mechanism of the FA breakdown has been investigated on the molecular scale using DFT  calculations13. 
However, unlike in the case of the UV exposure that results in electronic excitation, HT processing of FA doesn’t 
lend itself to the DFT treatment. Thus, although the exact FA breakdown pathway under HT treatment is not 
clear, we can conclude that he most likely fluorescent product of the breakdown is 6-formylpterin (see Fig. S2).

Conclusions
Our findings show that the result of HT treatment of the FA for 120 min at 200 °C is breakdown of the acid 
into fragments. Comparison of experimental and DFT-calculated UV–VIS and Raman data (see Figs. 2 and 4) 
suggest that only peaks associated with glutamate and PABA have disappeared as a result of HT treatment. It 
further follows from the analysis of the UV–VIS absorption, fluorescence emission, IR and Raman data that the 
MPT responsible for the light emission remains largely intact. We concluded that the excitation-independent 
blue light emission widely reported for carbon nanoparticles prepared from FA is of molecular nature and is due 
to enhanced emission from the MPT following removal of the FA fragments responsible for the fluorescence 
quenching (i.e. PABA). Our experimental findings are supported by the DFT calculations which allow for atomic-
scale investigation of the evolution of FA under HT treatment.

HT treatment has been widely used to produce what is frequently described as carbon nanoparticles. How-
ever, in many  cases12,15 it is some sort of molecular species that can be responsible for the light emission both on 
the account of the reported high quantum yields and PL emission range (typically blue). Here we demonstrated 
that it is certainly the case for HT-treated FA. At the same time, insights gained in this work could be applied to 
a variety of molecules to alter their emission and/or to produce new fluorophores utilising reduced stability of 
molecular fragments (e.g. PABA and Glu). This should be particularly true for molecules consisting of aromatic 
rings and non-conjugated chains. Finally, analysis we carried out indicates that the DFT-based screening can 
provide a pathway to novel fluorophore development using HT synthesis route.

Methods
Hydrothermal treatment of folic acid. Hydrothermal treatment was carried out according to the pro-
tocol described in our recent  publication22. The typical procedure includes preparation of FA water suspension 
(1000 ml), using 0.44 g (or 0.0018 g) of FA, allowing to obtain solution 1 × 10–3 M (or 4 × 10–6 M). A portion of 
this suspension (3 ml) was then transferred into a glass cup, placed into the Teflon cup with tight-fitting cover, 
put inside stainless steel autoclave and heated at 200 °C for a certain selected time. The resulting solution was 
cooled at room temperature and centrifuged (20 min, 7500g). After centrifugation solutions were stored at 4 °C.

Sample characterisation. Luminescent and excitation spectra were measured with a spectrofluorimeter 
Cary Eclipse (Agilent Technologies, Australia). Absorbance spectra of solutions were recorded using Shimadzu 
UV-1800 UV/Visible Scanning Spectrophotometer (Shimadzu, Japan) in a standard 10-mm quartz cuvette. To 
exclude possible self-precipitation due to exposure to UV-irradiation FA colloids of  10–4 M and  10–3 M con-
centration were diluted to  10–5 M immediately before spectra recording. The relative quantum yields (QY) of 
samples were calculated using quinine sulfate as a reference.

Figure 4.  Experimental Raman data for crystalline FA, FA diluted in aqueous solution and HT-treated FA (a). 
Simulated Raman data for of FA, FA fragment without the Glu (FA no Glu), pterine-6-carboxilic acid (pterine) 
and 6-formyl pterin (6-FP) (b).
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Raman spectra were acquired with a Renishaw inVia Raman (Renishaw, UK) and Horiba LabRam HR (Hor-
iba, France) spectrometer sunder 532 nm irradiation (200 μW, power at 0, 1%) and. The integration time was 
30 s per spectrum. A drop of samples diluted to  10–4 M was deposited on a glass slide for each measurement.

FT-IR spectrometer Nicolet 6700 (Thermo Scientific, USA) was used to record infrared spectra. Samples 
were dried in advance and prepared in an inert atmosphere in an amount of 3 mg. Preparation of solid samples 
for registration of the infrared spectra was carried out in the pressing of tablets with alkali metal halides (KBr), 
at room temperature.

DFT calculations and spectra modelling. Molecular models for all structures have been obtained from 
the PubChem—an open chemistry database at the National Institutes of Health, USA. All quantum chemical 
calculations were performed using Gaussian 09 suite of  programs25 Geometry optimization and frequency cal-
culations (including Raman intensities) of studied molecules have been achieved using the hybrid Density Func-
tional Theory approach  B3LYP26,27 with Pople type double ζ basis sets augmented by polarization functions on 
all atoms (namely 6-31G(d,p))28,29. In order to calculate electronic excitation wavelengths (λTD-DFT) and the asso-
ciated oscillator strength parameters  (fTD-DFT), TD-B3LYP calculations have been performed using 6-31G(d,p) 
basis sets. For geometry optimizations and spectroscopic parameters computations, the SMD  model30 has been 
employed to simulate bulk solvent effects (i.e. water; ε = 78.3553 and ε(inf) = 1.806874). In order to compare 
theoretical and experimental data, Raman and UV–Visible spectra have been simulated by performing convolu-
tion with Gaussian type functions. For Raman spectra, convolution has been performed thanks to the Molden 
 program31,32 using 20.0 cm-1 width at half-length. For electronic transition spectra, convolution of each calcu-
lated transition and the sum of these Gaussian functions on the whole wavelength range have been achieved 
using the following equation:

where I
(

�Spec

)

 is the intensity of the simulated spectrum at �Spec , �iTD−DFT and f iTD−DFT are the wavelength and 
the oscillator strength of the ith TD-DFT excited state, respectively. The parameter BW was arbitrary set to 300 
 nm2 in order to achieve a fixed width at half-length close to 30 nm. No correction (red or blue shift) has been 
applied on the theoretical wavelengths when simulating whole UV–Visible spectra. Similarly, no correction 
parameter has been applied to the calculated frequencies for the simulation of Raman spectra.
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